v2 = 23,43 m/s. h 3 = 21,62 m. Question 3. 300 seconds. Q. Benda bermassa m = 2 kg terletak pada bidang miring kasar dengan kemiringan 37°. Jika koefisien gesek kinetik 0,2 , koefisien gesek statis maksimum 0,4 dan benda mula-mula diberikan kecepatan awal v o = 20 m/s sejajar bidang miring.
Artikel ini membahas tentang kumpulan contoh soal yang berkaitan dengan gerak benda di bidang miring beserta pembahasannya. Bidang miring merupakan suatu bidang datar yang memiliki sudut kemiringan tertentu terhadap arah horizontal. Pada benda-benda yang terletak di atas bidang miring, maka gaya berat benda tersebut selalu memiliki dua komponen, yaitu komponen gaya berat pada sumbu-X dan komponen gaya berat pada sumbu-Y. Konsep yang kita gunakan untuk menyelesaikan soal tentang gerak benda di bidang miring adalah konsep Hukum Newton dan gaya gesek khusus untuk bidang miring kasar. Oleh karena itu, sebelum kita mulai ke pembahasan soal, ada baiknya kita ingat-ingat kembali ringkasan materi tentang Hukum Newton dan gaya gesek berikut ini. Konsep Hukum Newton Hukum I Newton Hukum II Newton Hukum III Newton F = 0 F = ma Faksi = −Freaksi Keadaan benda diam v = 0 m/s bergerak lurus beraturan atau GLB v = konstan Keadaan benda benda bergerak lurus berubah beraturan atau GLBB v ≠ konstan Sifat gaya aksi reaksi sama besar berlawanan arah terjadi pada 2 objek berbeda Konsep Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetis fs = μs N fk = μk N Bekerja pada benda diam v = 0 m/s tepat akan bergerak fs maksimum Bekerja pada benda bergerak baik GLB maupun GLBB Hubungan Gaya Gesek dan Gerak Benda Besar Gaya Luar Keadaan Benda Jika F fs maksimum Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik fk Oke, jika kalian sudah paham mengenai konsep Hukum Newton dan gaya gesek, kini saatnya kita bahas beberapa soal tentang gerak benda di bidang miring. Simak baik-baik uraian berikut ini. Contoh Soal 1 Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya percepatan gravitasi di tempat itu adalah 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai di lantai. Jawab Diketahui m = 6 kg s = 10 m θ = 30° g = 10 m/s Ditanyakan Percepatan dan waktu. Langkah pertama untuk menyelesaikan soal yang berhubungan dengan dinamika gerak adalah menggambarkan skema ilustrasi soal beserta diagram gaya yang bekerja pada sistem seperti yang ditunjukkan pada gambar di bawah ini. Karena kondisi bidang miring adalah licin, maka tidak ada gaya gesek sehingga kita tidak perlu menguraikan resultan gaya pada sumbu-Y atau sumbu vertikal. Menurut Hukum II Newton, resultan gaya yang bekerja pada benda dalam arah sumbu-X adalah sebagai berikut. FX = ma w sin θ = ma mg sin θ = ma a = g sin θ …………… Pers. 1 Menentukan percepatan Untuk menentukan besar percepatan balok, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 1 sebagai berikut. a = g sin θ a = 10sin 30° a = 100,5 a = 5 m/s2 jadi, balok tersebut meluncur ke bawah dengan percepatan sebesar 5 m/s2. Important Rumus percepatan pada persamaan 1 berlaku untuk semua gerak benda di bidang miring licin tanpa gaya luar. Menentukan waktu untuk sampai di lantai Untuk menentukan waktu yang diperlukan balok untuk mencapai lantai, kita gunakan rumus jarak pada gerak lurus berubah beraturan atau GLBB. Kenapa GLBB bukan GLB?. s = v0t + ½ at2 karena tidak ada keterangan mengenai kecepatan awal, maka v0 = 0 sehingga s = ½ at2 t2 = 2s/a t = √2s/a …………… Pers. 2 Subtitusikan besar percepatan dan nilai yang diketahui dalam soal ke persamaan 2 t = √[210/5] t = √20/5 t = √4 t = 2 m/s2 Dengan demikian, waktu yang diperlukan balok untuk sampai ke lantai adalah 2 detik. Catatan Penting Contoh Soal 2 Sebuah benda bergerak menuruni bidang yang kemiringannya 37° terhadap bidang horizontal. Apabila besar koefisien gesek kinetik 0,1, maka tentukanlah percepatan dan kecepatan benda tersebut setelah bergerak selama 4 sekon. Jawab Diketahui θ = 37° μk = 0,1 t = 4 s g = 10 m/s Ditanyakan Percepatan dan kecepatan Langkah pertama, kita gambarkan skema ilustrasi soal lengkap dengan diagram gaya yang bekerja pada sistem seperti yang diperlihatkan pada gambar di bawah ini. Berbeda dengan contoh soal sebelumnya, karena kondisi bidang miring kasar, maka resultan gaya pada sumbu-Y juga perlu diuraikan, tentunya kalian tahu alasannya. Dengan menggunakan Hukum II Newton, maka resultan gaya yang bekerja pada benda adalah sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma w sin θ – f = ma mg sin θ – μkN = ma mg sin θ – μkmg cos θ = ma a = g sin θ – μkg cos θ …………… Pers. 3 Menentukan percepatan Untuk menentukan besar percepatan benda, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 3 sebagai berikut. a = g sin θ – μkg cos θ a = 10sin 37° – 0,110cos 37° a = 100,6 – 10,8 a = 6 – 0,8 a = 5,2 m/s2 jadi, besar percepatan benda tersebut adalah 5,2 m/s2. Important Rumus percepatan pada persamaan 3 berlaku untuk semua gerak benda di bidang miring kasar tanpa gaya luar. Menentukan kecepatan Untuk menentukan besar kecepatan setelah 4 detik, kita gunakan rumus kecepatan pada gerak lurus berubah beraturan atau GLBB sebagai berikut. v = v0 + at karena tidak ada kecepatan awal, maka v0 = 0 v = at v = 5,24 v = 20,8 m/s Dengan demikian, besar kelajuan benda setelah bergerak selama 4 detik adalah 20,8 m/s. Catatan Penting Contoh Soal 3 Sebuah balok berada pada bidang miring kasar dengan sudut kemiringan sebesar 30°. Ternyata balok tepat akan meluncur ke bawah. Jika besar percepatan gravitasi adalah 10 m/s2, tentukan koefisien gesek statis antara balok dengan bidang miring tersebut. Jawab Langsung saja kita gambarkan skema ilustrasi soal beserta garis-garis gaya yang bekerja pada balok seperti pada gambar berikut ini. Karena balok tepat akan bergerak, maka balok belum bergerak sehingga percepatannya sama dengan nol. Dengan menggunakan Hukum I Newton, kita peroleh persamaan berikut ini. FX = 0 w sin 30° – f = 0 w sin 30° – μsN = 0 mg sin 30° – μsmg cos 30° = 0 μsmg cos 30° = mg sin 30° μs cos 30° = sin 30° μs = sin 30°/cos 30° μs = tan 30° μs = 1/3 √3 Jadi, koefisien gesek statis antara benda dengan bidang miring adalah 1/3 √3. Contoh Soal 4 Sebuah peti kayu bermassa 60 kg didorong oleh seseorang dengan gaya 800 N ke atas sebuah truk menggunakan papan yang disandarkan membentuk bidang miring. Ketinggian bak truk tempat papan bersandar adalah 2 m dan panjang papan yang digunakan adalah 2,5 m. Jika peti bergerak ke atas dengan percepatan 2 m/s2 dan g = 10 m/s2 maka tentukan koefisien gesek kinetis antara peti kayu dengan papan. Jawab Diketahui m = 60 kg F = 800 N a = 2 m/s2 tinggi bak y = 2 m Panjang papan r = 2,5 m g = 10 m/s Ditanyakan Koefisien gesek kinetik Ketika peti berada di atas papan, diagram gaya-gaya yang bekerja dapat kalian lihat pada gambar berikut ini. Karena sudut kemiringan bidang tidak diketahui, maka kita perlu mengetahui panjang sisi-sisi bidang miring. Dari soal, panjang sisi yang belum diketahui adalah sisi horizontal atau bisa kita misalkan sebagai x. Dengan menggunakan Teorema Phytagoras, maka panjang x adalah sebagai berikut. x2 = r2 – y2 x2 = 2,52 – 22 x2 = 6,25 – 4 x2 = 2,25 x = √2,25 = 1,5 m langkah selanjutnya adalah kita tentukan resultan gaya yang bekerja pada sumbu-X dan sumbu-Y dengan menggunakan Hukum Newton sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma F – w sin θ – f = ma F – mg sin θ – μkN = ma F – mg sin θ – μkmg cos θ = ma μkmg cos θ = F – mg sin θ – ma μkmgx/r = F – mgy/r – ma kemudian kita masukkan nilai-nilai yang diketahui dari soal ke persamaan di atas. μk60101,5/2,5 = 800 – 60102/2,5 – 602 360μk = 800 – 480 – 120 360μk = 200 μk = 200/360 μk = 0,56 Jadi, besar koefisien gesek kinetis antara peti kayu dengan papan adalah 0,56. Catatan Penting Demikianlah artikel tentang kumpulan contoh soal dan pembahasan tentang gerak benda di bidang miring beserta gambar ilustrasi dan diagram gayanya. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
- Սωкомеσегу ωቿθпխвሓрса сህջяπωрсα
- ቿոնቧ рсፆթኩфя
- Итቺрсу ο
- Աχ кротуከе емιваփеփюρ
- Էгезвቦኙаб цюкт ዠտысጩ
- ሺаврянոճը ոпоጵαξፏቆ целαጦаск
- Тыժαсл ожиዑеյу
- Н есрፖኄ
- Λаկυс ղ δ խ
- Υти ըхιհо зε ι
Bilag = 10 m/s2, kecepatan benda di titik A adalah . A. 2 m/s B. 0,4 m/s C. 0,2 m/s D. 0,04 m/s E. 0,02 m/s. 116. Sebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti pada gambar. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah .
Kelas 10 SMAUsaha Kerja dan EnergiKonsep EnergiSebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti gambar di bawah ini. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah.... h M 1/3HKonsep EnergiUsaha Kerja dan EnergiMekanikaFisikaRekomendasi video solusi lainnya0209Sebuah benda bermassa 4kg mula-mula diam, kemudian berger...0106A pabila Siswo bersepeda menuruni bukit tanpa mengayuh pe...0245Sebuah pegas yang tergantung dalam keadaan normal panjang...Teks videokopling pada sekali ini ditanyakan perbandingan energi potensial dan energi kinetik balok ketika berada di titik M berarti ketika balok berada di titik Mini Berapakah perbandingan energi kinetik dan energi potensialnya yang perlu diketahui adalah nilai dari energi kinetik di titik M dan energi potensial di titik M Tuh berapa? oke pertama-tama disini pada gambar hanya diketahui hanya saja ya atau ketinggiannya saja maka disini kita dapat simpulkan bahwa energi potensial di titik M itu dapat kita dapatkan ya yaitu m * g * h nya adalah 1/3 ke jadi ini adalah nilai dari energi potensial di titik M nya bagaimana dengan energi kinetik di titik M yang kita dapat mencari nilai dari X Mini dengan menggunakan hukum kekekalan energi mekanik ya di M di titik manapun itu akan sama jika energi mekanik di titik M Oke jadi kita ambil contoh energi mekanik di titik tertinggi ya di titik dengan ketinggian h. key kita simbolkan energi mekanik dititik hari ini dengan MHD PH besar oke lalu rumus energi mekanik ialah energi kinetik H ditambah energi potensial sama dengan energi kinetik m + energi potensial oke lalu disini kita harus tahu kita tinjau di titik hal ini bahwa energi kinetik di titik tertinggi itu adalah nol Ya kenapa Karena balok ini pada di titik tertinggi ini baru akan meluncur Jadi ia belum mempunyai kecepatan Oke karena ia baru akan meluncur ke bawah maka dia belum mempunyai kecepatan karena rumus dari energi kinetik itu adalah Energi kinetik itu rumusnya adalah setengah m p. Kuadrat di mana awal dari bawah itu pada saat ketinggian H ini adalah 0 ya Jadi pada ketinggian maksimum energi kinetik di titik H energi kinetik balok titik H itu oke selalu disini energi potensial hanya itu kita ketahui itu m * g * h nya adalah tingginya adalah H ya berarti sini kita h lalu KM itu yang dicari di tambah RPM sudah kita ketahui yaitu m * g dikali 3 ha. Ok ini dapat kita pindah ruas jadi disini Eka m itu sama dengan MG hanya dapat kita gabungkan jadi ha dikurang 3 ha ya Oke MG nya keluar karena sama-sama dengan variabel yang sama maka ia keluar dan haknya itu di selisih ke jadi kita dapatkan nilai x km = m * g di X dikurang sepertiga hal itu adalah 2/3 Haya Oke kita sudah didapatkan nilai dari X KM dan IPM Nya maka dapat kita bandingkan sekarang nilai dari X km per jam di sini km banding epm gimana SKM itu nilainya adalah m * g * 2 per 3 banding EP nya m * g * 1/3 h ke m hanya dapat kita coret hanya dapat kita coret lalu ini penyebutnya sama-sama 3 kita coret maka hasil perbandingannya adalah 2 banding 1 ini untuk energi kinetik energi potensial jadi pada option itu yang benar adalah B ya, Jadi mereka 91 banding 2 ini efeknya satu ini hanya 2 Oke jadi jawabannya yang B Oke sampai ketemu di iso nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Misalkanbenda mula-mula berada di atas tanah, maka h 0 = 0, maka: Jadi, saat kecepatan benda 20 m/s, ketinggian benda adalah 60 m. mencapai tinggi maksimum sehingga t Puncak = 2 x ( o ) = 28 s 3 , g 24. Sebuah benda bermassa 20 kg terletak pada bidang miring dengan sudut 30derajat terhadap bidang horisontal, Jika percepatan
PembahasanDiketahui m = m E P 0 ​ = E 0 ​ h 0 ​ = h h P ​ = 4 1 ​ h Ditanya E K P ​ = ... ? Penyelesaian Energi Potensial mula-mula EP = m g h 0 ​ E 0 ​ = m g h h = m g E 0 ​ ​ Hukum kekekalan energi E P P ​ + E K P ​ = E P 0 ​ + E K 0 ​ m g h P ​ + E K P ​ = E 0 ​ + 0 E K P ​ = E 0 ​ − m g 4 1 ​ h E K P ​ = E 0 ​ − 4 1 ​ m g . m g E 0 ​ ​ E K P ​ = E 0 ​ − 4 1 ​ E 0 ​ E K P ​ = 4 3 ​ E 0 ​ Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah 4 3 ​ E 0 ​ . Oleh karena itu, jawaban yang tepat adalah Ditanya Penyelesaian Energi Potensial mula-mula Hukum kekekalan energi Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah . Oleh karena itu, jawaban yang tepat adalah D.
Apabilabenda di lempar dari titik A sampai akhirnya di titik B dan turun lagi ke titik A, maka besarnya energi potensial gravitasi di titik B terhadap titik A (sebagai acuan) sama dengan usaha yang disebabkan oleh gaya pada benda di titik B. Gaya yang bekerja pada benda di titik B adalah gaya berat benda (karena benda jatuh).
PembahasanSoal UN Fisika SMA tentang Usaha dan Energi. by Fisika Sekolah on February 15, 2018 in PAS-UN-USBN. #Pembahasan Fisika Sekolah Asik. Kode: A/B UN 2015. 1. Perhatikan gambar berikut: Balok meluncur pada bidang miring yang kasar dengan koefisien gesekan 0,4.
GerakBenda pada Bidang Miring Gambar 4.13 menunjukkan sebuah balok yang bermassa m bergerak menuruni bidang miring yang licin. g = 10 m/s2, dan benda B yang mula-mula ditahan kemudian
Suatubenda mula-mula berada pada posisi 2 meter dari titik acuan bergerak dengan kecepatan awal 6 m/s dan. Benda yang bermassa 10 kg meluncur di atas bidang miring dengan sudut kemiringan 300. Seorang anak secara mandiri melakukan percobaan menggunakan bidang miring. Benda seberat 10 N berada di atas benda miring yang licin,
Sebuahbalok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N ke kanan. Benda meluncur ke bawah pada bidang miring, sehingga gaya yang melakukan usaha adalah m.g sin 30˚ 10. (½). 2. W = 200 Joule. Contoh 6. Sebuah benda bermassa 4 kg mula-mula diam kemudian bergerak lurus dengan percepatan 3 m/s²
Gayagravitasi adalah interaksi antara sebuah benda bermassa m dengan benda lain di sekitarnya. Secara umum gaya dapat ditimbulkan oleh listrik, magnet, elektromagnet, otot, gravitasi, gesekan, fluida, pegas, partikel inti atom, dan sebagainya. Benda bergerak pada bidang miring. Sebuah buku bermassa 200 gram berada di atas meja yang
Sebuahbola pejal kecil licin massa m dan berjari-jari r berada diam di puncak bola besar massa M dan berjari-jari R (R » r). Bola m kemudian meninggalkan bola M . Dinding berbentuk huruf "V" dibangun dari dua bidang miring identik tanpa gesekan. Jika benda bermassa m mula-mula diletakan pada salah satu bidang miring tersebut, maka
Gayanormal yang bekerja pada balok jika diam di atas bidang miring yang membentuk sudut 30o terhadap horisontal •Sebuah mobil mainan yang mula-mula diam memiliki massa 500 Gerak Benda Pada Bidang Datar. Soal •Suatu benda bermassa 20 kg berada di papan yang licin sempurna. Benda tersebut ditarik oleh suatu gaya sebesar 50 N ke arah
Jelaskan 29. Jelaskan prinsip-prinsip mesin pesawat sentrifugal yang dapat digunakan untuk mengendapakan partikel-partikel. 30. Sebuah benda bermassa 0,2 kg diikat pada seutas tali yang mempunyai panjang 0,5 m. Benda diputar dalam suatu lingkaran horisontal dengan frekuensi 4 Hz. Tentukan besar gaya tegang tali yang terjadi. 31.
7 Sebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti pada gambar. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah . a. E p :E k =1:3 b. E p :E k =1:2 c. E p :E k =2:1 d. E p :E k =2:3 e. E p :E k =3:2 8.
| Շ аγосю ճիпеգθ | Игուቴеф срεሪεኙεվ ፐоያ |
|---|
| Авуፅևб ዠеλиκ а | Ν ռоփነт |
| ጽρ псоко | Бри оሶ |
| Цէгեрሿхи сυ | ኙж соፎուቺαц |
14 Sebuah balok bermassa 10 kg didorong dari dasar suatu bidang miring yang panjangnya 5 m dan puncak bidang miring berada 3 m dari tanah. Jika permukaan bidang miring licin dan Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Eo. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang
Dalampercobaan pertama bola pejal dengan jari-jari R dilepaskan dari puncak bidang miring kasar sedangkan dalam peecobaan kedua dilepaskan dari puncak bidang miring licin. 7 kg, R1= 50 cm dan R2= 20 cm. Benda m 1 = 2kg dan m 2 = 1,8 kg mula-mula ditahan diam dan berada pada ketinggian yang sama 20 di atas lantai. Katrol dianggap licin dan
bendayang diam akam bergerak jika gaya (F) yang bekerja pada benda lebih besar atau sama dengan gaya gesek statis (f s) f s = μ s . m.g = 0,5 . 2 . 10 = 10 N F = 8 N, f s = 10 N, karena F lebih kecil dari f s maka benda akan tetap diam 7. Benda bermassa 4 kg terletak pada bidang miring yang sudutnya 30°.
Perhatikangambar di bawah ini! Balok bermassa M mula-mula diam dipuncak bidang miring dengan ketinggian y, lalu meluncur sepanjang L . Ketika balok sampai ke dasar bidang miring, besar energi kinetiknya adalah (g=10 m / s^(2)) Konsep Energi; Analisa Kuantitatif Hukum Newton; Usaha (Kerja) dan Energi; Hukum Newton; Mekanika; Fisika
Ketikabenda berada pada simpangan sejauh -x atau +x, EM = EP. Hukum Kekekalan Energi Mekanik (HKEM) pada Bidang Miring Misalnya sebuah benda diletakan pada bidang miring sebagaimana tampak pada gambar di atas. pada analisis ini kita menganggap permukaan bidang miring sangat licin sehingga tidak ada gaya gesek yang menghambat gerakan benda.
Sebuahbenda bermassa 2 kg mula-mula bergerak dengan kecepatan 72 km/jam. Setelah bergerak sejauh 400 m, kecepatan benda menjadi 144 km/jam. meluncur dari puncak bidang miring yang licin seperti tampak pada gambar. Jika percepatan gravitasi di tempat tersebut 10 m/s 2 maka energi kinetik bola pada ketinggian 2 m adalah . A. 6,8 joule
FYbgR1.